

Aspects of Sign Input to Deaf children of Deaf parents

Corina Goodwin^a ^aUniversity of Connecticut

Diane Lillo-Martin^{a,b}

^bHaskins Laboratories

Acknowledgements

The SLAAASh Team has made this work possible; special thanks to

Lee Prunier

Julie Hochgesang

Many thanks to our participants and their families

✤Financial support from:

 National Institute on Deafness and other Communication Disorders, the National Institutes of Health: Award Numbers R01DC013578, and R01DC009263. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Introduction

Relationships between language input and child language development

- Child-directed speech often has specific formational and grammatical modifications (exaggerated prosody, high pitch, simple structures)
- Large literature shows relationships between parental language measures and children's language development along with other factors including SES (Dollaghan et al. 1999) and genetics (Dale et al. 2015)
- Studies also show relationships between input and *later* development in some domains (Huttenlocher et al. 2010)
- Not every aspect of language shows specific relationships (Newport, Gleitman & Gleitman 1977)

Vocabulary

- Measures of input *quality* relate to child vocabulary skill at different points in development, even with SES and quantity of input controlled (Rowe 2012)
 - 2nd year: quantity
 - 3rd year: diversity
 - 4th year: decontextualized language

Measures of lexical diversity in vocabulary:

- Type-Token Ratio (TTR)
- Number of Different Words (NDW)

Morphosyntax

• Mothers may be sensitive to the child's growing linguistic competence, though relations between input and child's level are complex (e.g., Nelson et al. 1984)

Measures of morphosyntax:

- Mean Length of Utterance MLUw, MLUm, MLU10 (Brown 1973)
 - Based on 100 utterance sample, excluding imitations, routines
 - Variation across languages in steepness of developmental curve
- Index of Productive Syntax (IPSyn) (Scarborough 1990)
 - Based on 100 utterance sample
 - 1-2 points given for use of target structures

Previous studies of child-directed signing

- ✓ Modifications to sign size, space (Erting et al. 1990, Holzrichter & Meier 2000, Masataka 2000, Pizer et al. 2011)
- Vocabulary that increases in diversity over time, predicting child's development?
 - van den Bogaerde (2000) found *no systematic increases* over time in Type-Token Ratio of mother's NGT input to deaf children
- Simplification of sentence structure, with growing complexity over time?
 - Kantor (1982), van den Bogaerde (2000) found little increase in MLU

Research questions

- How do Deaf Mothers change their signing (vocabulary, morphosyntax) over time when addressing their Deaf children?
- How does the children's linguistic development relate to their Mothers' signing?
- How do different measures of linguistic complexity compare when studying this relationship?

Methods

Participants

- Two children recorded longitudinally ages 1;04-4;01
- Spontaneous production during naturalistic play
- Interlocutors: Deaf parents; Deaf or hearing, signing experimenters

Child	# sessions	age begin	age end	time observed (hrs:mins)	est. # gloss tokens	est. # child utts.
ABY	79	1;04.22	3;04.07	73:43	130,000	16,600
NED	44	1;05.28	4;01.28	40:00	60,000	9,000

Lillo-Martin & Chen Pichler (2008); SLAAASh project https://slla.lab.uconn.edu/slaaash/

9

Data and Annotation

- 10 Sessions across age range for each child chosen for analysis
- Gloss Annotation conducted under SLAAASh project conventions
- Addition of Addressee tiers to distinguish child-directed signing
 - Body orientation and eye gaze to child
 - 96% reliability across 2 coders
- Identification of 100 analyzable utterances
 - Prosodic breaks, meaning, grammar used to choose Syntactic Units
 - 83% reliability across 2 coders

NDW coding

- 100-word sample
- Calculate total number of different words in sample
 - all inflected forms considered the same word
 - IX included, but only distinction between IX(self) & IX(other)
 - same for POSS and SELF
 - For depicting signs, only different handshapes were considered different words

MLU coding

- 100-utterance sample
- Includes IX, but only when produced in combination with other signs
- Each lexical sign considered 1 word
- For depicting signs, each handshape that represents an object considered a word
- MLU10 is the mean of the 10 longest utterances
- 98% reliability across 2 coders

Lillo-Martin, Berk, Hopewell-Albert & Quadros (2015)

ASL-IPSyn coding

- 100-utterance sample
- 73 different items across 5 categories:
 - Noun
 - Verb
 - Depicting Signs
 - Questions/Negation
 - Sentence Types
- Up to 2 points for each item, if used in at least 2 different contexts
- 87% reliability across 2 coders

Lillo-Martin, Goodwin & Prunier (2017)

Results

14

NDW

Children's NDW increases over time

Aby: *r*(8) = .60, *p* = .03

Ned: *r*(8) = .62, *p* = .03

NDW

• No relationship between Mothers' NDW and their child's

Aby: *r*(8) = .27, *p* = .23

Ned: *r*(8) = .10, *p* = .39

MLUw

• We see little increase over time in MLUw for either children or mothers

17

MLUw

• Mothers' MLUw is not related to their children's

Aby: *r*(8) = .40, *p* = .13 Ned: *r*(8) = -.33, *p* = .17

MLU10

• Children's MLU10 does show increase over time

Ned: *r*(8) = .53, *p* = .06

MLU10

• Mothers' MLU10 is not related to their children's

Aby: *r*(8) = .21, *p* = .30

Ned: *r*(8) = -.08, *p* = .42

ASL-IPSyn

• Children's IPSyn increases over time

Aby: r(8)=.94, p<.0001 IPSyn - Aby


```
Ned: r(8) = .74, p =.007
```

IbSyn Score

Child's Age (months)

ASL-IPSyn

• Moderate relationship in IPSyn between Aby and her Mother, but not for Ned and his mother

Ned: *r*(8) = -.16, *p* = .33

Aby: *r*(8) = .47, *p* = .09

())

Discussion

Vocabulary

- We observed consistent growth in vocabulary for the children, but no relationship between children's scores and their mothers'
- In general, the mothers start at a higher level than the children, and do not increase much, with high variability across sessions
- The average and range of NDW was slightly higher for Ned's mother than Aby's mother, but slightly higher for Aby than Ned (ns by *t*-test)

MLU

- MLUw does not show clear development in these data but is highly variable across time
- Similar results found for other sign languages (e.g., NGT, van den Bogaerde 2000)
- Sign languages may be numerically more similar to Cantonese-type languages (mean MLU=3.0 age 42 months; Klee et al. 2004)
- MLU10 more reflective of language growth in children, but again, we see no relationship between mothers and their children
- MLU scores highly dependent on calculation of syntactic units, known to be challenging in sign language research (Fenlon et al. 2007)

ASL-IPSyn

- ASL-IPSyn robustly captures language development in these children
- Aby's Mother's scores increase with hers, but Ned's mother uses more complex structures from early on
- Specifically designed to include range of structures typically acquired over the observed period
 - Needs further validation with additional data

Child-Directed Signing Summary

- Although we did not specifically analyze modifications in signing form, we did observe that both mothers used them, including
 - Modifications of signing size
 - Signing on the child's body
- Aby's mother also seems to have modified grammatical aspects of her signing – possibly this could become more clear with more data analyzed
- Ned's mother seems to be using a more adult-like register in her ASL grammar

Conclusions

- We have not found a strong relationship between children's vocabulary and grammatical development and their mother's signing to them
- However, these data come from only two dyads
- Differences between Aby and Ned and their mothers hint at individual differences

